
Rust Programming Language

Jerry W. Rice, Principal Systems Software Consultant

jerrywrice@fabnexus.com

www.fabnexus.com

Vers 0.3.2
1

mailto:jerrywrice@fabnexus.com
http://www.fabnexus.com/

Prelude

• Immediately following the slides, we’ll conduct a (live) Rust
firmware demo using an STM32F091RC Nucleo
development board.

• These slides will be available following today’s meeting.

2

History

• The Rust language began in 2006 as the personal open-source project
of Mozilla software engineer Graydon Hoare - pictured above. His
goal was a modern systems programming language, whose design
incorporated techniques to eliminate ‘undefined behavior’ and other
subtle reliability issues well understood from the c/c++ collective
experience.

• In 2009 his results led Mozilla to sponsor and fund the project.

3

History (continued)

• The first stable Rust compiler tool-chain version (1.0) released in 2015
(Edition 2015).

• Additional Rust Editions were released in 2018, 2021, and just last
month the 2024 Edition released.

• Mozilla sponsored the Rust project until mid-2020 (covid pandemic),
when business conditions resulted in down-sizing at Mozilla.

• Following this, the Rust Foundation was launched in early 2021
https://foundation.rust-lang.org/

4

https://foundation.rust-lang.org/

Overview of the Rust Language

• Rust is a high-level programming language suitable for firmware
and operating system kernel/driver/module development.

• It’s also used for run-time efficient infrastructure applications,
network stacks, distributed software systems, cryptography,
safety-critical automation, and aerospace and defense
applications.

• Other than Rust, the ‘c’ language (1972) is the only major PL
option in the systems programming domain. c++ (introduced in
1985) was designed as the successor to ‘c’, but recent history
indicates for advanced low-level software efforts, c++ is at a
disadvantage due to its legacy design and associated ‘baggage’.

5

Overview of the Rust Language

• Rust is carefully designed to evolve/improve without
abruptly obsoleting previously developed (Rust) software.

• To achieve this ‘friendly’ evolution the Rust language
project uses Semantic Versioning (https://semver.org/)
with its six (6) week rolling minor releases, and three (3)
year Edition major releases.

• Rust Edition releases are the singular time that ‘breaking’
language changes will be introduced - with auto-migration
tools provided.

6

https://semver.org/

Overview of the Rust language (continued)

• To install the Rust Tool-chain on one’s desktop computer visit
the link https://www.rust-lang.org/tools/install

• There’s a world-wide open-source ecosystem of community
provided add-on Rust support tools and component libraries
(called ‘crates’).

• Key examples of additional open-source Rust resources include:
• Microsoft Visual Code IDE (with Rust extensions)

https://code.visualstudio.com/download

• Crates.io library registry: https://crates.io/

7

https://www.rust-lang.org/tools/install
https://code.visualstudio.com/download
https://crates.io/

Overview of the Rust language (continued)

• Next let’s examine a basic Rust program’s source code
(snippet).

8

9

10

Overview of the Rust language (continued)

• By convention Rust public crates (libraries) use the MIT and/or Apache
licenses. The Rust tool-chain itself also uses these licenses. These licenses
do not incur the ‘copy left’ constraints of GPLx licenses, thus developers
may create Rust code which is proprietary closed-source, while leveraging
available open-source Rust code.

• While many Rust software tools/libraries are free open-source, some high-
value Rust software packages are privately developed and have commercial
licenses.

11

Overview of the Rust language (continued)

• The Rust tool-chain consists of the following integrated
component tools

• ‘rustc’ => The Rust tool-chain cross-platform compiler

• ‘cargo’ => The Rust tool-chain build-manager

• ‘rustup’ => The Rust tool-chain installer and updater

• ‘clippy’ => The Rust tool-chain lint static analyzer

12

Overview of the Rust language (continued)
• ‘rustfmt’ => The Rust tool-chain source-code doc tool

‘rust-analyzer’ is a free add-on provided by Ferrous Systems and the Rust open-
source community. It’s a Rust source syntax editor/debugger plug-in.

The ‘cargo’ tool provides an integrated unit-test facility, and ‘rustc’ has a
powerful macro code generation capability: see https://doc.rust-
lang.org/book/ch20-06-macros.html

• As we’ll see later, Rust macros are used extensively throughout the Rust
standard library, and all other non-embedded Rust code.

• In practice developers infrequently create new macros and more frequently
use available published/documented macros which have been extensively
verified/tested.

13

https://doc.rust-lang.org/book/ch20-06-macros.html
https://doc.rust-lang.org/book/ch20-06-macros.html

14

Overview of the Rust language (continued)

• The cross-platform Rust tool-chain downloads and runs on

MS Windows, Linux, and Apple Mac Os desktops.

• The latest stable Rust tool-chain continues to build/run

legacy Rust projects published as early as Rust’s initial 1.0

stable release.

• The Rust compiler team releases new (minor version) tool-

chain upgrades on a ~six (6) week cycle.

15

Overview of the Rust language (continued)

• The Rust tool-chain generates binary code for a large collection
of target platforms (271 targets as of version 1.85).

• Each project’s target is specified in its cargo project file(s), or
defaults to the current build host target.

• When building for a target other than one’s development host,
the resulting binary code files must be loaded/copied to the
target platform (or emulation environment) before execution.

• Rust targets span a wide range of hardware platforms:
Arm32/64, x86-64, Riskv32/64, ESP, NRFxxxx, RPxxxx, MIPS, and
some others.

• For the full target list, run the terminal command
 ‘rustc --print target-list’ .

16

Overview of the Rust language (continued)
• Rust data and concurrency safety ‘guard rails’ are very beneficial.
• These consist of Rust ‘ownership system’ with ‘borrow checker’, ‘data life-time’

tracking, and data reference mutability rules. The Rust compiler prevents dangling
pointers, data races, and reference-use-after-free issues by rejecting and reporting
source code sequences that contain these issues.

• Such error scenarios can be ‘subtle’ and are sometimes difficult for a developer to
immediately recognize without the compiler expressly erroring and reporting them.
The Rust compiler’s error messages are high quality and well crafted.

• This is why developers new to Rust sometimes express frustration when initially
‘fighting with the compiler’s borrow-checker’. Nevertheless, for those who
persevere familiarity and time mitigates this annoyance.

17

Overview of the Rust language (continued)

• Rust allows low-level code with direct access to hardware

registers, raw memory addresses, DMA controllers and such.

• The Rust annotated ‘unsafe’ keyword supports this ability. Only

in ‘unsafe’ code blocks or functions does the Rust compiler

permit memory address reference operations with its ‘raw

pointer’ feature.

18

Overview of the Rust Programming Language (continued)

• Rust data values use either static, stack or heap-allocated
memory.

• Rust heap-allocated data-items are not deallocated via a run-
time ‘garbage collection’, nor overtly by a developer supplied
command.

• At compile-time the Rust compiler silently injects assembler
code that efficiently deallocates each heap allocated data
variable – typically when its ‘owner’ exits (falls out of) scope.

• Briefly peaking ‘under the covers’: Heap-based values have a
hidden stack allocated ‘Fat Pointer’ control block which contains
the internal (private) address to the data value’s contiguous
heap-memory space. The hidden control block also has a
‘current-size’ and ‘capacity’ (integer) field. See next slide.

19

20

Overview of the Rust Programming Language (continued)

• The Rust compiler uses the LLVM infrastructure for its
target code generation.

• This facilitates Rust multi-platform target code generation,
by leveraging LLVM’s intra-module and cross-module
optimization functionality.

• Compiled Rust binary executables are statically linked by
default. On hosted Rust platforms, dynamically linked
libraries are an option.

21

 Overview of the Rust Programming Language (continued)

• Rust has generic data types, struct/enum/tuple composition fundamental
declared types, fixed-size arrays and slices.

• Rust heap allocated resizable arrays are provided via the generic
std::Vec<T> type.

• Threads, the allocator, and certain other useful Rust features are provided
by its standard library. This helps reduce compiler complexity.

• The Rust language emphasizes a functional programming style rather than
the classic procedural approach. Many Rust ‘statements’ are also
expressions, only terminated with a semicolon.

• Rust does not support exceptions/exception handlers. It instead relies on its
standard Option and Result types, coupled with its ‘match’ or other
conditional statements. All errors are reported as result statuses.

• Rust panic!() facility is actually a ‘notify and halt’ debug feature.
22

Rust’s Async Programming Model

• Rust provides an opt-in ‘asynchronous’ mode of program flow
sequencing. Its asynchronous task feature use ‘async’ keyword
prefixed function declarations, the ‘await’ operator, async Future trait
objects, a ‘poll’ and ‘waker’ item, as well as a library supported async
executor mechanism.

• Rust async provides concurrent execution by way of multiplexed
‘async tasks’, which do not incur the costly run-time overhead of
conventional threads-based context-switching.

 https://rust-lang.github.io/async-book/

23

https://rust-lang.github.io/async-book/

Rust Embedded App for bare metal target

// main.rs

#![no_std] // don't link the Rust standard library
#![no_main] // disable all Rust-level entry points

use core::panic::PanicInfo;

#[no_mangle] // don't mangle the name of this function
pub extern "C" fn _start() -> ! {
 // this function is the entry point, since the linker looks for a function
 // named `_start` by default
 loop {}
}

/// This function is called on panic.
#[panic_handler]
fn panic(_info: &PanicInfo) -> ! {
 loop {}
}

24

Rust Embassy Embedded Async App

Demo time! The demo consists of a Rust embassy async firmware app

running on a STM32 ARM M0 low-power dev board.

Embassy reference: https://embassy.dev/book/

First let’s view an image of the hardware setup (next slide)

Then a high-level block-diagram of our firmware’s architecture

25

https://embassy.dev/book/

26

27

28

Rust: Areas of Continued Language Evolution

• Rust’s async programming model is an area of continued debate and
study by the Rust community. It will certainly evolve and improve in
the future.

• Rust’s type system, generics, traits, and type bounds expressivity are
areas of continued examination and improvement.

• Self-referencing struct fields and the Pin and !Pin reference
annotations, are a matter of complexity which may be
revised/simplified.

• Compiler error messages are an on-going area of improvement.

29

When is Rust a Reasonable Option?

• The project should have a capable Rust developer (or team). Some
organizations have invested in hiring outside (new) Rust developers,
or training in-house developers.

• Rust is an excellent option if your project is a forward-looking
research and/or experimental or training type development. This
often ties directly to the prior bullet item.

• Rust is a reasonable option when the project is a (well-funded)
‘commercial grade’ project‘ that is starting with a clean state (no
legacy software constraints).

30

When is Rust a Reasonable Option (continued)?

• Rust offers much to software projects which require high reliability
and/or safety-critical operation.

• If software portability and reliability are highly desirable for your
project, Rust may be a good option.

• Rust is a niche tool/language, and IMO seems unlikely to diminish in
importance in the foreseeable future. It’s still early enough in its
adoption and business ‘life cycle’ that there should be ample
opportunities for emerging small companies which astutely
understand and navigate this technology sector.

31

Potential reasons for not using Rust

• For poorly funded, or very tight completion schedules, or
burdensome legacy constraints, Rust is not likely a reasonable
option.

• If an organization’s management is hesitant/conservative and
normally reluctant to adopt newer/fresher technologies, then
Rust is likely not a suitable language choice. Rust, while gaining
popularity and gaining more use in recent years, is in certain
aspects still a ‘developing/early-stage’ technology. A given Rust
project may in-fact need to make course corrections and
contingency actions should specific Rust ‘maturity related
issues’ arise.

32

Reasons for not using Rust

• There are certain software niches where Rust currently lags in
terms of specific crate support. Full-featured GUI frameworks
are the most notable example. While GUI options have
improved for Rust in the past couple of years with SLint
(https://slint.dev/) emerging, and certain Rust Web-app
frameworks having been published, but new Rust projects
requiring a sophisticated multi-page in-process GUI should
carefully evaluate this topic. There are bridging crates for
integrating Qt, Gtk, Windows native, and other legacy GUI
frameworks into Rust applications, but such bridging has
complexity issues of its own. This is an area of concern for the
near term.

33

https://slint.dev/

Reasons for not using Rust (continued)

• Rust isn’t designed for ‘rapid prototyping’ of large
software systems. Rust is intended for and has a
development model designed for producing reliable and
maintainable software (a different emphasis than rapid
prototyping). Rust can be used for prototyping if
applicable pre-existing Rust source code can be readily
adapted. This option is made more likely by the sheer
quantity of available open-source code in public repos.

34

Reasons for not using Rust (continued)

• If a project requires interfacing to legacy libraries from another
programming language, one should carefully evaluate the available
options for this. Rust provides built-in support for interfacing directly
to C code, but interfacing to c++ is more complex. Interfacing with
non-c languages is often about or more complex as interfacing to.

• On this topic, there is a significant effort underway focused on
generating tools and techniques that assist when calling Rust code
from C++, and Rust code calling into C++ libraries. This effort is
funded by Google in collaboration with the Rust Foundation. It’s fairly
early stage at this time.

35

Technical Training Resources

36

Additional Recommended Reading/Viewing

• https://doc.rust-lang.org/book/

• https://www.amazon.com/Programming-Rust-Fast-Systems-
Development/dp/1492052590

• https://www.amazon.com/Rust-Rustaceans-Programming-
Experienced-Developers-ebook/dp/B0957SWKBS

• https://www.youtube.com/watch?v=8O0Nt9qY_vo&t=6123s

• https://blog.rust-lang.org/inside-rust/index.html

37

https://doc.rust-lang.org/book/
https://www.amazon.com/Programming-Rust-Fast-Systems-Development/dp/1492052590
https://www.amazon.com/Programming-Rust-Fast-Systems-Development/dp/1492052590
https://www.amazon.com/Rust-Rustaceans-Programming-Experienced-Developers-ebook/dp/B0957SWKBS
https://www.amazon.com/Rust-Rustaceans-Programming-Experienced-Developers-ebook/dp/B0957SWKBS
https://www.youtube.com/watch?v=8O0Nt9qY_vo&t=6123s
https://blog.rust-lang.org/inside-rust/index.html

	Slide 1: Rust Programming Language
	Slide 2: Prelude
	Slide 3: History
	Slide 4: History (continued)
	Slide 5: Overview of the Rust Language
	Slide 6: Overview of the Rust Language
	Slide 7: Overview of the Rust language (continued)
	Slide 8: Overview of the Rust language (continued)
	Slide 9:
	Slide 10:
	Slide 11: Overview of the Rust language (continued)
	Slide 12: Overview of the Rust language (continued)
	Slide 13: Overview of the Rust language (continued)
	Slide 14
	Slide 15: Overview of the Rust language (continued)
	Slide 16: Overview of the Rust language (continued)
	Slide 17: Overview of the Rust language (continued)
	Slide 18: Overview of the Rust language (continued)
	Slide 19: Overview of the Rust Programming Language (continued)
	Slide 20:
	Slide 21: Overview of the Rust Programming Language (continued)
	Slide 22: Overview of the Rust Programming Language (continued)
	Slide 23: Rust’s Async Programming Model
	Slide 24: Rust Embedded App for bare metal target
	Slide 25: Rust Embassy Embedded Async App
	Slide 26
	Slide 27
	Slide 28:
	Slide 29: Rust: Areas of Continued Language Evolution
	Slide 30: When is Rust a Reasonable Option?
	Slide 31: When is Rust a Reasonable Option (continued)?
	Slide 32: Potential reasons for not using Rust
	Slide 33: Reasons for not using Rust
	Slide 34: Reasons for not using Rust (continued)
	Slide 35: Reasons for not using Rust (continued)
	Slide 36: Technical Training Resources
	Slide 37: Additional Recommended Reading/Viewing

